Vertebra segmentation based on two-step refinement
نویسندگان
چکیده
Knowledge of vertebra location, shape, and orientation is crucial in many medical applications such as orthopedics or interventional procedures. Computed tomography (CT) offers a high contrast between bone and soft tissues, but automatic vertebra segmentation remains difficult. Hence, the wide range of shapes, aging, and degenerative joint disease alterations as well as the variety of pathological cases encountered in an aging population make automatic segmentation sometimes challenging. Besides, daily practice implies a need for affordable computation time. This paper aims to present a new automated vertebra segmentation method (using a first bounding box for initialization) for CT 3D data which tackles these problems. This method is based on two consecutive steps. The first one is a new coarse-to-fine method efficiently reducing the data amount to obtain a coarse shape of the vertebra. The second step consists in a hidden Markov chain (HMC) segmentation using a specific volume transformation within a Bayesian framework. Our method does not introduce any prior on the expected shape of the vertebra within the bounding box and thus deals with the most frequent pathological cases encountered in daily practice. We experiment this method on a set of standard lumbar, thoracic, and cervical vertebrae and on a public dataset, on pathological cases, and in a simple integration example. Quantitative and qualitative results show that our method is robust to changes in shapes and luminance and provides correct segmentation with respect to pathological cases.
منابع مشابه
SMURFS: Superpixels from Multi-scale Refinement of Super-regions
Recent applications in computer vision have come to rely on superpixel segmentation as a pre-processing step for higher level vision tasks, such as object recognition, scene labelling or image segmentation. Here, we present a new algorithm, Superpixels from MUlti-scale ReFinement of Super-regions (SMURFS), which not only obtains state-ofthe-art superpixels, but can also be applied hierarchicall...
متن کاملSimultaneous Segmentation and Correspondence Establishment for Statistical Shape Models
Statistical Shape Models have been proven to be valuable tools for segmenting anatomical structures of arbitrary topology. Being based on the statistical description of representative shapes, an initial segmentation is required – preferably done by an expert. For this purpose, mostly manual segmentation methods followed by a mesh generation step are employed. A prerequisite for generating the t...
متن کاملA Framework of Vertebra Segmentation Using the Active Shape Model-Based Approach
We propose a medical image segmentation approach based on the Active Shape Model theory. We apply this method for cervical vertebra detection. The main advantage of this approach is the application of a statistical model created after a training stage. Thus, the knowledge and interaction of the domain expert intervene in this approach. Our application allows the use of two different models, tha...
متن کاملLiver Segmentation in CT Data: A Segmentation Refinement Approach
Liver segmentation is an important prerequisite for planning of surgical interventions like liver tumor resections. For clinical applicability, the segmentation approach must be able to cope with the high variation in shape and gray-value appearance of the liver. In this paper we present a novel segmentation scheme based on a true 3D segmentation refinement concept utilizing a hybrid desktop/vi...
متن کاملA Pixon-based Image Segmentation Method Considering Textural Characteristics of Image
Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016